Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Blockchains operating at the global scale demand high-performance byzantine fault-tolerant (BFT) consensus protocols. Most classic PBFT-like protocols suffer from an issue known as the leader bottleneck, which severely limits their throughput and resource utilization. Recently, Directed Acyclic Graph, or DAG-based protocols, have emerged as a promising approach for eliminating the leader bottleneck and achieving better performance. They attain higher throughput by separating data dissemination and block ordering. However, their safety and liveness logic is also significantly more elaborate. So far, most DAG-based protocols have only enjoyed on-paper security proofs, and it is not clear how to construct formal proofs of these protocols efficiently. We introduce LiDO-DAG, a concurrent object model that abstracts the common logic of these protocols. LiDO-DAG is constructed by combining a DAG abstraction and LiDO, a recently proposed abstraction for leader-based consensus. To demonstrate that our framework enables rapid validation of new DAG-based protocol designs, we implemented LiDO-DAG in Coq and applied it to three recent DAG-based protocols, including Narwhal, Bullshark, and Sailfish. Our framework readily yields mechanized safety and liveness proofs for all three protocols, which are also the first mechanized liveness proofs of any DAG-based protocol. Our framework has also revealed an optimization for Sailfish that improves its worst-case latency.more » « lessFree, publicly-accessible full text available June 10, 2026
- 
            Formal verification is a gold standard for building reliable computer systems. Certified systems in particular come with a formal specification, and a proof of correctness which can easily be checked by a third party. Unfortunately, verifying large-scale, heterogeneous systems remains out of reach of current techniques. Addressing this challenge will require the use of compositional methods capable of accommodating and interfacing a range of program verification and certified compilation techniques. In principle, compositional semantics could play a role in enabling this kind of flexibility, but in practice existing tools tend to rely on simple and specialized operational models which are difficult to interface with one another. To tackle this issue, we present a compositional semantics framework which can accommodate a broad range of verification techniques. Its core is a three-dimensional algebra of refinement which operates across program modules, levels of abstraction, and components of the system's state. Our framework is mechanized in the Coq proof assistant and we showcase its capabilities with multiple use cases.more » « lessFree, publicly-accessible full text available January 7, 2026
- 
            Crash-safety is an important property of real systems, as the main functionality of some systems is resilience to crashes. Toward a compositional verification approach for crash-safety under full-system crashes, one observes that crashes propagate instantaneously to all components across all levels of abstraction, even to unspecified components, hindering compositionality. Furthermore, in the presence of concurrency, a correctness criterion that addresses both crashesandconcurrency proves necessary. For this, several adaptations of linearizability have been suggested, each featuring different trade-offs between complexity and expressiveness. The recently proposed compositional linearizability framework shows that to achieve compositionality with linearizability, both a locality and observational refinement property are necessary. Despite that, no linearizability criterion with crashes has been proven to support an observational refinement property. In this paper, we define a compositional model of concurrent computation with full-system crashes. We use this model to develop a compositional theory of linearizability with crashes, which reveals a criterion,crash-aware linearizability, as its inherent notion of linearizability and supports both locality and observational refinement. We then show that strict linearizability and durable linearizability factor through crash-aware linearizability as two different ways of translating between concurrent computation with and without crashes, enabling simple proofs of locality and observational refinement for a generalization of these two criteria. Then, we show how the theory can be connected with a program logic for durable and crash-aware linearizability, which gives the first program logic that verifies a form of linearizability with crashes. We showcase the advantages of compositionality by verifying a library facilitating programming persistent data structures and a fragment of a transactional interface for a file system.more » « less
- 
            Compositionality is at the core of programming languages research and has become an important goal toward scalable verification of large systems. Despite that, there is no compositional account oflinearizability, the gold standard of correctness for concurrent objects. In this article, we develop a compositional semantics for linearizable concurrent objects. We start by showcasing a common issue, which is independent of linearizability, in the construction of compositional models of concurrent computation: interaction with the neutral element for composition can lead to emergent behaviors, a hindrance to compositionality. Category theory provides a solution for the issue in the form of the Karoubi envelope. Surprisingly, and this is the main discovery of our work, this abstract construction is deeply related to linearizability and leads to a novel formulation of it. Notably, this new formulation neither relies on atomicity nor directly upon happens-before ordering and is only possiblebecauseof compositionality, revealing that linearizability and compositionality are intrinsically related to each other. We use this new, and compositional, understanding of linearizability to revisit much of the theory of linearizability, providing novel, simple, algebraic proofs of thelocalityproperty and of an analogue of the equivalence withobservational refinement. We show our techniques can be used in practice by connecting our semantics with a simple program logic that is nonetheless sound concerning this generalized linearizability.more » « less
- 
            Achieving consensus is a challenging and ubiquitous problem in distributed systems that is only made harder by the introduction of malicious byzantine servers. While significant effort has been devoted to the benign and byzantine failure models individually, no prior work has considered the mechanized verification of both in a generic way. We claim this is due to the lack of an appropriate abstraction that is capable of representing both benign and byzantine consensus without either losing too much detail or becoming impractically complex. We build on recent work on the atomic distributed object model to fill this void with a novel abstraction called AdoB. In addition to revealing important insights into the essence of consensus, this abstraction has practical benefits for easing distributed system verification. As a case study, we proved safety and liveness properties for AdoB in Coq, which are the first such mechanized proofs to handle benign and byzantine consensus in a unified manner. We also demonstrate that AdoB faithfully models real consensus protocols by proving it is refined by standard network-level specifications of Fast Paxos and a variant of Jolteon.more » « less
- 
            Byzantine fault-tolerant state machine replication (SMR) protocols, such as PBFT, HotStuff, and Jolteon, are essential for modern blockchain technologies. However, they are challenging to implement correctly because they have to deal with any unexpected message from Byzantine peers and ensure safety and liveness at all times. Many formal frameworks have been developed to verify the safety of SMR implementations, but there is still a gap in the verification of their liveness. Existing liveness proofs are either limited to the network level or do not cover popular partially synchronous protocols. We introduce LiDO, a consensus model that enables the verification of both safety and liveness of implementations through refinement. We observe that current consensus models cannot handle liveness because they do not include a pacemaker state. We show that by adding a pacemaker state to the LiDO model, we can express the liveness properties of SMR protocols as a few safety properties that can be easily verified by refinement proofs. Based on our LiDO model, we provide mechanized safety and liveness proofs for both unpipelined and pipelined Jolteon in Coq. This is the first mechanized liveness proof for a byzantine consensus protocol with non-trivial optimizations such as pipelining.more » « less
- 
            Verified compilation of open modules (i.e., modules whose functionality depends on other modules) provides a foundation for end-to-end verification of modular programs ubiquitous in contemporary software. However, despite intensive investigation in this topic for decades, the proposed approaches are still difficult to use in practice as they rely on assumptions about the internal working of compilers which make it difficult for external users to apply the verification results. We propose an approach to verified compositional compilation without such assumptions in the setting of verifying compilation of heterogeneous modules written in first-order languages supporting global memory and pointers. Our approach is based on the memory model of CompCert and a new discovery that a Kripke relation with a notion of memory protection can serve as a uniform and composable semantic interface for the compiler passes. By absorbing the rely-guarantee conditions on memory evolution for all compiler passes into this Kripke Memory Relation and by piggybacking requirements on compiler optimizations onto it, we get compositional correctness theorems for realistic optimizing compilers as refinements that directly relate native semantics of open modules and that are ignorant of intermediate compilation processes. Such direct refinements support all the compositionality and adequacy properties essential for verified compilation of open modules. We have applied this approach to the full compilation chain of CompCert with its Clight source language and demonstrated that our compiler correctness theorem is open to composition and intuitive to use with reduced verification complexity through end-to-end verification of non-trivial heterogeneous modules that may freely invoke each other (e.g., mutually recursively).more » « less
- 
            Real-time systems power safety-critical applications that require strong isolation among each other. Such isolation needs to be enforced at two orthogonal levels. On the micro-architectural level, this mainly involves avoiding interference through micro-architectural states, such as cache lines. On the algorithmic level, this is usually achieved by adopting real-time partitions to reserve resources for each application. Implementations of such systems are often complex and require formal verification to guarantee proper isolation. In this paper, we focus on algorithmic isolation, which is mainly related to scheduling-induced interferences. We address earliest-deadline-first (EDF) partitions to achieve compositionality and utilization, while imposing constraints on tasks' periods and enforcing budgets on these periodic partitions to ensure isolation between each other. The formal verification of such a real-time OS kernel is challenging due to the inherent complexity of the dynamic priority assignment on the partition level. We tackle this problem by adopting a dynamically constructed abstraction to lift the reasoning of a concrete scheduler into an abstract domain. Using this framework, we verify a real-time operating system kernel with budget-enforcing EDF partitions and prove that it indeed ensures isolation between partitions. All the proofs are mechanized in Coq.more » « less
- 
            Finding the right abstraction is critical for reasoning about complex systems such as distributed protocols like Paxos and Raft. Despite a recent abundance of impressive verification work in this area, we claim the ways that past efforts model distributed state are not ideal for protocol-level reasoning: they either hide important details, or leak too much complexity from the network. As evidence we observe that nearly all of them avoid the complex, but important issue of reconfiguration. Reconfiguration's primary challenge lies in how it interacts with a protocol's core safety invariants. To handle this increased complexity, we introduce the Adore model, whose novel abstract state hides network-level communications while capturing dependencies between committed and uncommitted states, as well as metadata like election quorums. It includes first-class support for a generic reconfiguration command that can be instantiated with a variety of implementations. Under this model, the subtle interactions between reconfiguration and the core protocol become clear, and with this insight we completed the first mechanized proof of safety of a reconfigurable consensus protocol.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available